ilustrasi integral zenius

Integral – Pengertian, Sifat, Rumus, Beserta Contoh Soalnya

Masih bingung sama materi tentang integral? Yuk pelajari lagi tentang pengertian, sifat, jenis, rumus, sampai contoh soal integral!

Waktu gue SMA, gue dulu suka sama matematika, apalagi materi integral. Rasanya, menghadapi soal integral itu nagih, menantang, dan puas kalau berhasil nemuin hasilnya.

Namun, bukannya sekarang gue udah nggak suka ya. Mungkin karena gue udah nggak bersentuhan sama materi integral sejak lulus SMA, gue jadi lupa sama kenangan-kenangan manis gue ketika belajar integral, termasuk ilmunya.

Mumpung elo masih hidup di sekitar integral, dan UTBK juga bakal ngebahas tentang integral, gue mau ngajak elo flashback sama materi integral, biar nggak terlanjur lupa kayak gue. Gue akan mengupas tuntas integral dari konsep, sifat, jenis-jenis dan rumusnya, teknik penyelesaian, aplikasi, sampai contoh soal dan pembahasannya. Cekidot!

Pengertian Integral

Kita mulai dari pengertian integral. Sebelum mempelajari sesuatu, elo harus tahu apa sesuatu itu. Ibarat sebelum elo jadian ama dia, elo mesti tahu dulu seluk-beluk si dia kayak gimana, biar nggak salah pilih.

Jadi, apa itu integral?

Kalkulus sebagai cabang ilmu matematika mencakup beberapa konsep, kayak limit, turunan, dan integral.

Ketiga konsep penghitungan itu saling nyambung satu sama lain. Elo pasti tahu turunan kan? Nah, integral adalah kebalikan dari proses turunan, yang disebut anti turunan.

Kalau elo masih lupa-lupa ingat sama turunan, elo bisa belajar lagi tentang turunan di sini ya. Soalnya, dari turunan lah, kita belajar integral.

Gue kasih contoh paling dasar hubungan antara turunan dan integral.

Misalnya. Kalau ada sebuah fungsi f(x) diturunkan, maka menjadi f’(x). Nah, integral kan kebalikannya turunan, jadi f’(x) dibalik lagi. Maka, hasilnya balik menjadi f(x).

Terus, gimana formula dari integral?Definisi integral yang paling sederhana dan banyak digunakan di kalkulus dasar serta fisika sampai sekarang adalah Integral Riemann. Definisi ini dibikin sama matematikawan Jerman, Georg Friedrich Bernhard Riemann. Bentuknya kayak gini nih.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 249
Definisi integral. (Arsip Zenius)
Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 250

So, rumus integral nggak berdiri sendiri, tetapi bergantung sama apa yang ada di dalam turunan. Kalau elo udah tahu konsep ini, elo bisa ngerjain soal integral apa pun. Elo mulai dari konsep turunan yang berkaitan sama soal itu, cari padanannya, dan tinggal diintegralkan deh.

Namun, elo perlu mengingat kalau nggak semua konsep turunan bisa diintegralkan. Elo bisa lihat gambar di bawah ini.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 251
Ilustrasi pengecualian dalam integral. (Arsip Zenius)

Jadi, elo perlu ngerti kalau soal integral itu spesifik, datang dari turunan yang didesain khusus sama yang bikin soal. Sehingga, nggak ada soal integral yang nggak bisa diintegralkan, karena memang dirancang buat bisa diintegralkan. Nggak ada alasan “Pak Guru, Bu Guru, soalnya nggak ada jawabannya” ya.

Baca Juga: Kupas Tuntas Rumus Kalkulus Dasar: Limit, Turunan, dan Integral

Jenis-Jenis Integral

Ada dua jenis integral, yaitu integral tak tentu dan integral tentu. Ibarat si A yang ngasih kepastian ke elo dan si B yang suka datang dan pergi sesuka hati, mereka pasti punya sifat dan cara pedekate yang beda ke elo. Begitu juga dengan integral tentu dan integral tak tentu, macam-macam integral ini punya sifat dan rumusnya sendiri.

Integral Tak Tentu

Waktu kelas 11 SMA, elo kenalan sama integral tak tentu. Integral tak tentu adalah suatu fungsi baru yang turunannya sama kayak fungsi aslinya. Integral tak tentu nggak punya batas dan belum punya nilai yang jelas. Nilai yang nggak jelas ini dilambangkan dengan konstanta ( C ). Sedangkan, lambang integral tak tentu nggak punya batas atas dan batas bawah, karena nggak terbatas.

Rumus integral tak tentu yaitu:

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 252

Biar elo lebih paham, gue langsung kasih contoh soal integral tak tentu ya.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 253
Pembahasan contoh soal integral tak tentu. (Arsip Zenius)

Udah paham kan caranya? Tinggal masukin aja angkanya, balik ke rumus integral tak tentu. Ketemu deh hasilnya.

Sifat Integral Tak Tentu

Elo perlu memahami sifat integral tak tentu, buat memudahkan elo mengaplikasikan integral tak tentu.

Sifat integral tak tentu antara lain:

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 254

Aplikasi Integral Tak Tentu

Integral tak tentu nggak hanya diaplikasikan dalam matematika aja, tetapi juga fisika. Dalam bidang fisika, aplikasi integral tak tentu berguna dalam konsep jarak-kecepatan-percepatan, mengetahui f(x) kalau f'(x) dan f(a) diketahui, dan mengetahui f(x) kalau persamaan gradien garis singgung dan titik singgung diketahui.

Gue kasih satu contoh aplikasi integral tak tentu dalam konsep jarak-kecepatan-percepatan ya.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 255

Kita lihat rumus aslinya pada gambar di bawah ini.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 256
Ilustrasi rumus integral dalam konsep jarak, kecepatan, dan percepatan. (Arsip Zenius)

Kita tinggal masukin angka pada soal ke dalam rumus asli. Yang ditanyakan adalah jarak, jadi tugas elo adalah mencari s(t).

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 257

Integral Tentu

Kalau tadi integral tak tentu belum punya nilai yang pasti, integral tentu kebalikannya. Integral tentu adalah integral yang udah punya nilai awal dan akhir, punya batas yang jelas, nggak kayak integral tak tentu. Integral tentu punya batas atas dan batas bawah, yang lambang integralnya kayak gini ab.

b adalah batas atas variabel integrasi, dan a adalah batas bawahnya.

Jadi, bentuk rumus integral tentu adalah sebagai berikut:

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 258

Sifat Integral Tentu

Ibarat gebetan elo yang udah fix suka sama elo dan udah ngasih kepastian, sifatnya tentu lebih banyak kelihatan dong: romantis, perhatian, suka menabung buat nge-date bareng; dibandingkan si dia yang suka nge-ghosting, nggak jelas aslinya kayak gimana. So. sifat integral tentu lebih variatif. Elo perlu memahami konsepnya, biar ke depannya bisa langsung nerapin.

Gue jabarin pada gambar di bawah ini ya.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 259
Sifat-sifat integral tentu. (Arsip Zenius)

Aplikasi Integral Tentu

Integral tentu biasanya digunakan buat menghitung luas daerah yang nggak beraturan dan volume benda putar. Gue mau ngasih contoh aplikasi integral tentu buat menghitung luas daerah yang nggak beraturan. Elo bisa lihat gambar di bawah ini.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 260
Ilustrasi luas daerah tak beraturan. (Arsip Zenius)

Elo bisa lihat, ada daerah yang diarsir biru, yang dibatasi oleh fungsi y. Daerah itu dibatasi oleh a dan b.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 261

Sekarang, kalau daerah itu dibatasi dua fungsi, yang pertama:

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 262
Ilustrasi daerah dibatasi dua fungsi. (Arsip Zenius)

Kita anggap luas daerah itu sebagai L ya. Luas daerahnya tinggal dikurangi aja, dari fungsi yang di atas ke fungsi yang di bawah.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 263

Terus, kalau kurvanya kayak gini, gimana ngitungnya?

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 264
Ilustrasi daerah berada di bawah sumbu -x. (Arsip Zenius)

Daerah yang nggak beraturan pindah di bawah sumbu -x. Gimana cara ngitung luasnya?

Nah, kalau elo lihat gambar pertama yang nampilin daerah berwarna biru, sama gambar terakhir yang nampilin daerah kuning di bawah sumbu -x, kan sama aja tuh. Bedanya, yang biru ada di atas sumbu x, dan daerah kuning ada di bawah sumbu -x. Yaudah, rumusnya sama, tinggal dikasih minus aja.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 265

Sampai sini, udah paham kan aplikasinya?

Baca Juga: Aplikasi Integral: Cara Menghitung Volume Benda

Teknik Integral

Sekarang kita ngobrolin tentang teknik integral. Teknik integral itu apa sih? Ya metode buat menyelesaikan persamaan integral. Elo perlu menggunakan teknik ini buat ngerjain soal integral.

Di SMA dan UTBK, teknik yang biasanya muncul adalah teknik integral substitusi dan parsial. Dari sekian teknik integral, gue akan ngejelasin dua itu aja, biar belajar elo juga lebih efisien.

Teknik Integral Substitusi

Konsep dasar integral substitusi adalah ketika soal integral tersebut kompleks, sehingga perlu disederhanakan. Elo pilih salah satu fungsi yang bisa diturunkan, sehingga nanti fungsi itu bisa saling mensubstitusi dengan fungsi lainnya.

Rumus integral substitusi adalah:

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 266

Gue langsung kasih contoh aja ya.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 267

Teknik Integral Parsial

Sesuai namanya, integral parsial digunakan dengan memisahkan dua fungsi yang berbeda, tetapi punya variabel yang sama.

Rumus integral parsial yaitu:

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 268

f(x)= u, jadinya du= f(x)dx

g(x)= v, jadinya dv= g(x)dx

f(x) punya derajat n yang lebih besar dari 1 dan n adalah bilangan asli. Buat menghitungnya. Elo bisa memecah kedua fungsi seperti skema di bawah ini. Elo turunkan f(x), dan integralkan g(x).

skema integral parsial
Skema integral parsial. (Arsip Zenius)

Cara menghitungnya, elo kali silang f(x) dengan G1, kemudian kali silang turunan f’(x) dengan G2 dan seterusnya. Operasikan selang-seling hasilnya dari positif (+), negatif (-), begitu seterusnya.

Maka, rumus sederhananya adalah:

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 269

Gue kasih contohnya ya.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 270
cta banner donwload apps zenius

Download Aplikasi Zenius

Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimalin persiapan lo sekarang juga!

download aplikasi zenius play store
download aplikasi zenius app store
download aplikasi zenius app gallery

Baca Juga: Integral Parsial dan Integral Substitusi – Materi Matematika Kelas 11

Contoh Soal Integral dan Pembahasan

Sekarang, gue mau menguji pemahaman elo sama materi integral yang udah gue jelasin di atas. Coba kerjakan tiga contoh soal integral di bawah ini.

Contoh Soal 1

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 271

Berapa jawabannya?

Pembahasan

Dari contoh soal integral di atas, kita bisa lihat kalau variabel yang diintegrasi nggak punya batas nilai yang pasti. So, contoh soal integral ini termasuk ke dalam integral tak tentu.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 272

Contoh Soal 2

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 273

Pembahasan

Elo bisa memecah fungsi yang ada di dalam, menjadi:

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 274
Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 275

Contoh Soal 3

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 276

Pembahasan

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 277
Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 278

Belajar UTBK Bareng Zenius

Oke, kita udah belajar banyak tentang integral, dari konsep, jenis, rumus, sifat, sampai gimana teknik integral. Gimana nih, udah penuh belum memori elo?

Elo bisa kok mempelajari integral step by step buat belajar materi Matematika Saintek UTBK. Zenius udah ready nih buat nemenin elo belajar dengan berbagai video materi dan contoh soal integral. Elo bisa klik gambar di bawah ini buat mengakses video materi dan contoh soal integral. Pastikan elo udah punya akun Zenius, ya.

Integral - Pengertian, Sifat, Rumus, Beserta Contoh Soalnya 279

Sekian dulu dari gue. Semoga elo bisa paham dan bisa ngerjain soal integral waktu UTBK nanti. Kedatangan tamu dari Surabaya, sampai ketemu di artikel selanjutnya!

Baca Juga: Makin Jago Ngerjain Ribuan Contoh Soal Ujian Hanya di ZenPractice

Referensi

Materi Konsep Integral – Video UTBK

Materi Aplikasi Integral Tentu – Video Matematika Wajib Kelas 12

Materi Integral Tak Tentu – Video Matematika Wajib Kelas 11

Bagikan Artikel Ini!